Fast Filling Operations Used in the Reconstruction of Convex Lattice Sets

نویسندگان

  • Sara Brunetti
  • Alain Daurat
  • Attila Kuba
چکیده

Filling operations are procedures which are used in Discrete Tomography for the reconstruction of lattice sets having some convexity constraints. In [1], an algorithm which performs four of these filling operations has a time complexity of O(N logN), where N is the size of projections, and leads to a reconstruction algorithm for convex polyominoes running in O(N logN)-time. In this paper we first improve the implementation of these four filling operations to a time complexity of O(N), and additionally we provide an implementation of a fifth filling operation (introduced in [2]) in O(N logN) that permits to decrease the overall time-complexity of the reconstruction algorithm to O(N logN). More generally, the reconstruction of Q-convex sets and convex lattice sets (intersection of a convex polygon with Z) can be done in O(N logN)-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of convex lattice sets from tomographic projections in quartic time

Filling operations are procedures which are used in Discrete Tomography for the reconstruction of lattice sets having some convexity constraints. Many algorithms have been published giving fast implementations of these operations, and the best running time ([7]) is O(N2 log N) time, where N is the size of projections. In this paper we improve this result by providing an implementation of the fi...

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

An algorithm reconstructing convex lattice sets

In this paper, we study the problem of reconstructing special lattice sets from X-rays in a finite set of prescribed directions. We present the class of “Q-convex” sets which is a new class of subsets of Z2 having a certain kind of weak connectedness. The main result of this paper is a polynomial-time algorithm solving the reconstruction problem for the “Q-convex” sets. These sets are uniquely ...

متن کامل

1 Reconstruction of Q - convex lattice sets

We study the reconstruction of special lattice sets from X-rays when some convexity constraints are imposed on the sets. Two aspects are relevant for a satisfactory reconstruction: the unique determination of the set by its X-rays and the existence of a polynomial-time algorithm reconstructing the set from its X-rays. For this purpose we present the notion of Q-convex lattice sets for which the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006